WGCNA - 共表达分析

1. WGCNA基本概念

加权基因共表达网络分析 (WGCNA, Weighted correlation network analysis)是用来描述不同样品之间基因关联模式的系统生物学方法,可以用来鉴定高度协同变化的基因集, 并根据基因集的内连性和基因集与表型之间的关联鉴定候补生物标记基因或治疗靶点。

相比于只关注差异表达的基因,WGCNA利用数千或近万个变化最大的基因或全部基因的信息识别感兴趣的基因集,并与表型进行显著性关联分析。一是充分利用了信息,二是把数千个基因与表型的关联转换为数个基因集与表型的关联,免去了多重假设检验校正的问题。

理解WGCNA,需要先理解下面几个术语和它们在WGCNA中的定义。

  • 共表达网络:定义为加权基因网络。点代表基因,边代表基因表达相关性。加权是指对相关性值进行冥次运算(冥次的值也就是软阈值 (power, pickSoftThreshold这个函数所做的就是确定合适的power))。无向网络的边属性计算方式为abs(cor(genex, geney)) ^ power;有向网络的边属性计算方式为(1+cor(genex, geney)/2) ^ power; sign hybrid的边属性计算方式为cor(genex, geney)^power if cor>0 else 0。这种处理方式强化了强相关,弱化了弱相关或负相关,使得相关性数值更符合无标度网络特征,更具有生物意义。如果没有合适的power,一般是由于部分样品与其它样品因为某种原因差别太大导致的,可根据具体问题移除部分样品或查看后面的经验值

  • Module(模块):高度內连的基因集。在无向网络中,模块内是高度相关的基因。在有向网络中,模块内是高度正相关的基因。把基因聚类成模块后,可以对每个模块进行三个层次的分析:1. 功能富集分析查看其功能特征是否与研究目的相符;2. 模块与性状进行关联分析,找出与关注性状相关度最高的模块;3. 模块与样本进行关联分析,找到样品特异高表达的模块。

  • Connectivity (连接度):类似于网络中 “度” (degree)的概念。每个基因的连接度是与其相连的基因的边属性之和

  • Module eigengene E: 给定模型的第一主成分,代表整个模型的基因表达谱。这个是个很巧妙的梳理,我们之前讲过PCA分析的降维作用,之前主要是拿来做可视化,现在用到这个地方,很好的用一个向量代替了一个矩阵,方便后期计算。(降维除了PCA,还可以看看tSNE)

  • Intramodular connectivity: 给定基因与给定模型内其他基因的关联度,判断基因所属关系。

  • Module membership: 给定基因表达谱与给定模型的eigengene的相关性。

  • Hub gene: 关键基因 (连接度最多或连接多个模块的基因)。

  • Adjacency matrix (邻接矩阵):基因和基因之间的加权相关性值构成的矩阵。

  • TOM (Topological overlap matrix):把邻接矩阵转换为拓扑重叠矩阵,以降低噪音和假相关,获得的新距离矩阵,这个信息可拿来构建网络或绘制TOM图。

WGCNA分析基于两个假设:1.相似表达模式的基因可能存在共调控、功能相关或处于同一通路,2.基因网络符合无尺度分布。基于这两点,可以将基因网络根据表达相似性划分为不同的模块进而找出枢纽基因。

2. WGCNA基本分析流程

WGCNA的基本分析流程可以概括为:

  1. 构建基因共表达网络:使用加权的表达相关性。
  2. 识别基因集:基于加权相关性,进行层级聚类分析,并根据设定标准切分聚类结果,获得不同的基因模块,用聚类树的分枝和不同颜色表示。
  3. 如果有表型信息,计算基因模块与表型的相关性,鉴定性状相关的模块。
  4. 研究模型之间的关系,从系统层面查看不同模型的互作网络。
  5. 从关键模型中选择感兴趣的驱动基因,或根据模型中已知基因的功能推测未知基因的功能。
  6. 导出TOM矩阵,绘制相关性图。

3. WGCNA分析实战

在开始WGCNA分析实战前,我们可以直接按照官方提供的数据和教程,将相关代码运行一遍,我们就能大概了解WGCNA分析的内容、步骤、可能获得的结果等。在运行官方教程的同时,我也将其翻译为中文,和大家一起学习。

官方教程翻译:

注意,目前的翻译可能存在一定错误,欢迎大家指出。

参考

下面的这些教程对于WGCNA的了解是大家可以参考的,这个教程中的介绍内容也是从这些教程中来的。

WGCNA 
更新时间:2019-05-30 22:09:27

本文由 石九流 创作,如果您觉得本文不错,请随意赞赏
采用 知识共享署名4.0 国际许可协议进行许可
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名
原文链接:https://blog.computsystmed.com/archives/wgcna-co-expression-analysis
最后更新:2019-05-30 22:09:27

评论

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×